La luz es esencial para la mayoria de formas vivientes conocidas. es una radiacion electromagnetica que podemos ver, un intervalo de frecuencia estrecho de menos de una octava; no obstante, nos proporciona gra parte  de la belleza del mundo, y constituye nuestro principal contacto con nuestro ambiente. para nosotros su importancia , es literalmente incalculable, pero solamente las cuatro ultimas generaciones han entendido su naturaleza. tenemos suerte de podernos benificiar de los descubrimientos en optica, desde los realizados por los antiguos arabes hasta las ultimas innovaciones en laser y hologramas.

TEORIA SOBRE LA TEORIA DE LA LUZ

A lo largo de la historia, los fisicos han elaborado diversas teorias para explicar la naturaleza de la luz

 

LA TEORIA CORPUSCULAR

Tiene sus antecedentes de los antiguos fisicos griegos. Segun esta teoria, la luz consiste en un chorro  de particulas emitidas por el foco emisor.cuando estas particulas llegan al ojo, se genera el fenomeno de la vision; la reflexion de la luz se explica por el choque de las particalas luminosas con la superficie reflectora al modo como una pelota rebota en la pared

LA TEORIA ONDULATORIA

El foco luminoso emite ondas.Hoygens consideraba que las ondas luminosas eran longituinales y necesitaban un medio material para propagarse , este medio fue denominado eter, un medio extremada mente sutil, perfectamente elastico y extendido por todo el espacio. 

Las ondas luminosas se consideraban transversales y no longituinales . Explica perfectamente el fenomeno de difraccion y de interferencia de la luz

LA TEORIA DUAL DE LA LUZ

EINSTEIN mostro que el efecto fotoelectrico ( LA EMISION DE ELECTRONES POR SUPERFICIES METALICAS CUANDO LA LUZ INCIDE SOBRE ELLA )

LA PROPAGACION DE LA LUZ

VELOCIDAD DE LA LUZ INDICE DE REFRACCION

La velocidad de propagacion de ondas luminosas en el vacio de 299790k/s. Esta velocidad tan alta se transmitia de forma instantanea entre el foco y el receptor de la onda luminosa.

La velocidad de la luz no es igual en todos los medios se define el endice de refraccion n de un medio como el cociente entre la velocidad c de la luz en el vacio y la velocidad de la luz  en el medio

                                       n=c/v

REFLEXION Y REFRACCION DE LA LUZ

Cuando la luz incide sobre la superficie de separacion de dos medios se producen dos fenomenos caracteristicos dela onda: La reflexion y la refraccion  una parte de la luz se refleja y se propaga en un medio inicial, y la otra parte se refracta y se propaga en otro medio

REFLEXION TOTAL

Si la luz pas de un medio de mayor indice de refraccion a otro de mayor indice de refraccion a otro de menor indice, el angulo de refraccion es mayor que el angulo de incidencia. ejemplo: cuando la luz pasa  del agua al aire

Velocidad finita

Artículo principal: Velocidad de la luz
Una l�nea que muestra la velocidad de la luz en un modelo a escala de la Tierra y la  Luna, alrededor de 1.2 segundos.

Una línea que muestra la velocidad de la luz en un modelo a escala de la Tierra y la Luna, alrededor de 1.2 segundos.

Se ha demostrado teórica y experimentalmente que la luz tiene una velocidad finita. La primera medición con éxito fue hecha por el astrónomo danés Ole Roemer en 1676 y desde entonces numerosos experimentos han mejorado la precisión con la que se conoce el dato. Actualmente el valor exacto aceptado para la velocidad de la luz en el vacío es de 299.792.458 m/s.[1]

La velocidad de la luz al propagarse a través de la materia es menor que a través del vacío y depende de las propiedades dieléctricas del medio y de la energía de la luz. La relación entre la velocidad de la luz en el vacío y en un medio se denomina índice de refracción del medio:

n = \frac{c}{v}

Refracción

Artículo principal: Refracción
Prisma

Prisma

La refracción es el cambio brusco de dirección que sufre la luz al cambiar de medio. Este fenómeno se debe al hecho de que la luz se propaga a diferentes velocidades según el medio por el que viaja. El cambio de dirección es mayor, cuanto mayor es el cambio de velocidad, ya que la luz prefiere recorrer las mayores distancias en su desplazamiento por el medio que vaya más rápido. La ley de Snell relaciona el cambio de ángulo con el cambio de velocidad por medio de los índices de refracción de los medios.

Como la refracción depende de la energía de la luz, cuando se hace pasar luz blanca o policromática a través de un medio no paralelo, como un prisma, se produce la separación de la luz en sus diferentes componentes (colores) según su energía, en un fenómeno denominado dispersión refractiva. Si el medio es paralelo, la luz se vuelve a recomponer al salir de él.

Ejemplos muy comunes de la refracción son la ruptura aparente que se ve en un lápiz al introducirlo en agua o los arco iris.

Propagación y difracción

Artículo principal: Difracción
Sombra de una canica

Sombra de una canica

Una de las propiedades de la luz más evidentes a simple vista es que se propaga en línea recta. Lo podemos ver, por ejemplo, en la propagación de un rayo de luz a través de ambientes polvorientos o de atmósferas saturadas. La óptica geométrica parte de esta premisa para predecir la posición de la luz, en un determinado momento, a lo largo de su transmisión.

De la propagación de la luz y su encuentro con objetos surgen las sombras. Si interponemos un cuerpo opaco en el camino de la luz y a continuación una pantalla, obtendremos sobre ella la sombra del cuerpo. Si el origen de la luz o foco se encuentra cerca del cuerpo, de tal forma que, en proporción, sea más pequeño que el cuerpo, se producirá una sombra definida. Si se aleja el foco del cuerpo surgirá una sombra en la que se distinguen una región más clara denominada penumbra, y otra más oscura denominada umbra.

Sin embargo, la luz no siempre se propaga en línea recta. Cuando la luz atraviesa un obstáculo puntiagudo o una abertura estrecha, el rayo se curva ligeramente. Este fenómeno, denominado difracción es el responsable de que al mirar a través de un agujero muy pequeño todo se vea distorsionado o de que los telescopios y microscopios tengan un número de aumentos máximo.

Interferencia

Artículo principal: Interferencia

La forma más sencilla de estudiar el fenómeno de la interferencia es con el denominado experimento de Young que consiste en hacer incidir luz monocromática (de un solo color) en una pantalla que tiene rendija muy estrecha. La luz difractada que sale de dicha rendija se vuelve a hacer incidir en otra pantalla con una doble rendija. La luz procedente de las dos rendijas se combina en una tercera pantalla produciendo bandas alternativas claras y oscuras.

El fenómeno de las interferencias se puede ver también de forma natural en las manchas de aceite sobre los charcos de agua o en la cara con información de los discos compactos; ambos tienen una superficie que, cuando se ilumina con luz blanca, la difracta, produciéndose una cancelación por interferencias, en función del ángulo de incidencia de la luz, de cada uno de los colores que contiene, permitiendo verlos separados, como en un arco iris.

Al incidir la luz en un cuerpo, la materia de la que está constituido retiene unos instantes su energía y a continuación la reemite en todas las direcciones. Este fenómeno es denominado reflexión. Sin embargo, en superficies ópticamente lisas, debido a interferencias destructivas, la mayor parte de la radiación se pierde, excepto la que se propaga con el mismo ángulo que incidió. Ejemplos simples de este efecto son los espejos, los metales pulidos o el agua de un río (que tiene el fondo oscuro).

La luz también se refleja por medio del fenómeno denominado reflexión interna total, que se produce cuando un rayo de luz, intenta salir de un medio en que que su velocidad es más lenta a otro más rápido, con un determinado ángulo. Se produce una refracción de tal modo que no es capaz de atravesar la superficie entre ambos medios reflejándose completamente. Esta reflexión es la responsable de los destellos en un diamante tallado.

Cuando la luz es reflejada difusa e irregularmente, el proceso se denomina dispersión. Gracias a este fenómeno podemos seguir la trayectoria de la luz en ambientes polvorientos o en atmósferas saturadas. El color azul del cielo se debe a la luz del sol dispersada por la atmósfera. El color blanco de las nubes o el de la leche también se debe por la dispersión de la luz por el agua o por el calcio que contienen respectivamente.

Polarización

Artículo principal: Polarización electromagnética
Polarizador

Polarizador

El fenómeno de la polarización se observa en unos cristales determinados que individualmente son transparentes. Sin embargo, si se colocan dos en serie, paralelos entre si y con uno girado un determinado ángulo con respecto al otro, la luz no puede atravesarlos. Si se va rotando uno de los cristales, la luz empieza a atravesarlos alcanzándose la máxima intensidad cuando se ha rotado el cristal 90º respecto al ángulo de total oscuridad.

También se puede obtener luz polarizada a través de la reflexión de la luz. La luz reflejada está parcial o totalmente polarizada dependiendo del ángulo de incidencia. El ángulo que provoca una polarización total se llama ángulo de Brewster.

Muchas gafas de sol y filtros para cámaras incluyen cristales polarizadores para eliminar reflejos molestos.

Efectos químicos

Artículo principal: Fotoquímica

Algunas sustancias al absorber luz, sufren cambios químicos; utilizan la energía que la luz les transfiere para alcanzar los niveles energéticos necesarios para reaccionar, para obtener una conformación estructural más adecuada para llevar a cabo una reacción o para romper algún enlace de su estructura (fotólisis).

La fotosíntesis en las plantas, que generan azúcares a partir de dióxido de carbono, agua y luz; la síntesis de vitamina D en la piel; la ruptura de dihalógenos con luz en las reacciones radicalarias o el proceso de visión en el ojo, producido por la isomerización del retinol con la luz, son ejemplos de reacciones fotoquímicas. El área de la química encargada del estudio de estos fenómenos es la fotoquímica.

A principios del siglo XVIII era creencia generalizada que la luz estaba compuesta de pequeñas partículas. Fenómenos como la reflexión, la refracción y las sombras de los cuerpos, se podían esperar de torrentes de partículas. Isaac Newton demostró que la refracción estaba provocada por el cambio de velocidad de la luz al cambiar de medio y trató de explicarlo diciendo que las partículas aumentaban su velocidad al aumentar la densidad del medio. La comunidad científica, consciente del prestigio de Newton, aceptó su teoría corpuscular.

En la cuneta quedaba la teoría de Christian Huygens que en 1678 propuso que la luz era un fenómeno ondulatorio que se transmitía a través de un medio llamado éter. Esta teoría quedó olvidada hasta la primera mitad del siglo XIX, cuando Thomas Young sólo era capaz de explicar el fenómeno de las interferencias suponiendo que la luz fuese en realidad una onda. Otros estudios de la misma época explicaron fenómenos como la difracción y la polarización teniendo en cuenta la teoría ondulatoria.

El golpe final a la teoría corpuscular pareció llegar en 1848, cuando se consiguió medir la velocidad de la luz en diferentes medios y se encontró que variaba de forma totalmente opuesta a como lo había supuesto Newton. Debido a esto, casi todos los científicos aceptaron que la luz tenía una naturaleza ondulatoria. Sin embargo todavía quedaban algunos puntos por explicar como la propagación de la luz a través del vacío, ya que todas las ondas conocidas se desplazaban usando un medio físico, y la luz viajaba incluso más rápido que en el aire o el agua. Se suponía que este medio era el éter del que hablaba Huygens, pero nadie lo conseguía encontrar.

 

En 1845, Michael Faraday descubrió que el ángulo de polarización de la luz se podía modificar aplicándole un campo magnético (efecto Faraday), proponiendo dos años más tarde que la luz era una vibración electromagnética de alta frecuencia. James Clerk Maxwell, inspirado por el trabajo de Faraday, estudió matemáticamente estas ondas electromagnéticas y se dio cuenta de que siempre se propagaban a una velocidad constante, que coincidía con la velocidad de la luz, y de que no necesitaban medio de propagación ya que se autopropagaban. La confirmación experimental de las teorías de Maxwell eliminó las últimas dudas que se tenían sobre la naturaleza ondulatoria de la luz.

No obstante, a finales del siglo XIX, se fueron encontrando nuevos efectos que no se podían explicar suponiendo que la luz fuese una onda, como, por ejemplo, el efecto fotoeléctrico, esto es, la emisión de electrones de las superficies de sólidos y líquidos cuando son iluminados. Los trabajos sobre el proceso de absorción y emisión de energía por parte de la materia sólo se podían explicar si uno asumía que la luz se componía de partículas. Entonces la ciencia llegó a un punto muy complicado e incomodo: se conocían muchos efectos de la luz, sin embargo, unos sólo se podían explicar si se consideraba que la luz era una onda, y otros sólo se podían explicar si la luz era una partícula.

El intento de explicar esta dualidad onda-partícula, impulsó el desarrollo de la física durante el siglo XX. Otras ciencias, como la biología o la química, se vieron revolucionadas ante las nuevas teorías sobre la luz y su relación con la materia.

Naturaleza de la luz

La luz presenta una naturaleza compleja: depende de como la observemos se manifestará como una onda o como una partícula. Estos dos estados no se excluyen, sino que son complementarios (véase Dualidad onda corpúsculo). Sin embargo, para obtener un estudio claro y conciso de su naturaleza, podemos clasificar los distintos fenómenos en los que participa según su interpretación teórica:

Teoría ondulatoria

Descripción

Esta teoría considera que la luz es una onda electromagnética, consistente en un campo eléctrico que varía en el tiempo generando a su vez un campo magnético y viceversa, ya que los campos eléctricos variables generan campos magnéticos (ley de Ampère) y los campos magnéticos variables generan campos eléctricos (ley de Faraday). De esta forma, la onda se autopropaga indefinidamente a través del espacio, con campos magnéticos y eléctricos generándose continuamente. Estas ondas electromagnéticas son sinusoidales, con los campos eléctrico y magnético perpendiculares entre sí y respecto a la dirección de propagación (\vec{k}).

Vista lateral (izquierda) de una onda electromagnética a lo largo de un instante y vista frontal (derecha) de la misma en un momento determinado. De color rojo se representa el campo magnético y de azul el eléctrico.
Vista lateral (izquierda) de una onda electromagnética a lo largo de un instante y vista frontal (derecha) de la misma en un momento determinado. De color rojo se representa el campo magnético y de azul el eléctrico.

Para poder describir una onda electromagnética podemos utilizar los parámetros habituales de cualquier onda:

  • Amplitud (A): Es la longitud máxima respecto a la posición de equilibrio que alcanza la onda en su desplazamiento.
  • Periodo (T): Es el tiempo necesario para el paso de dos máximos o mínimos sucesivos por un punto fijo en el espacio.
  • Frecuencia (ν): Número de de oscilaciones del campo por unidad de tiempo. Es una cantidad inversa al periodo.
  • Longitud de onda (λ): Es la distancia lineal entre dos puntos equivalentes de ondas sucesivas.
  • Velocidad de propagación (v): Es la distancia que recorre la onda en una unidad de tiempo. En el caso de la velocidad de propagación de la luz en el vacío, se representa con la letra c.

La velocidad, la frecuencia, el periodo y la longitud de onda están relacionadas por las siguientes ecuaciones:

c = \lambda \cdot \nu = \frac{\lambda}{T}

Fenómenos ondulatorios

Algunos de los fenómenos más importantes de la luz se pueden comprender fácilmente si se considera que tiene un comportamiento ondulatorio.

El principio de superposición de ondas nos permite explicar el fenómeno de la interferencia: si juntamos en el mismo lugar dos ondas con la misma longitud de onda y amplitud, si están en fase (las crestas de las ondas coinciden) formarán una interferencia constructiva y la intensidad de la onda resultante será máxima e igual a dos veces la amplitud de las ondas que la conforman. Si están desfasadas, habrá un punto donde el desfase sea máximo (la cresta de la onda coincida exactamente con un valle) formándose una interferencia destructiva, anulándose la onda. El experimento de Young, con sus rendijas, nos permite obtener dos focos de luz de la misma longitud de onda y amplitud, creando un patrón de interferencias sobre una pantalla.

Las ondas cambian su dirección de propagación al cruzar un obstáculo puntiagudo o al pasar por una abertura estrecha. Como recoge el principio de Fresnel – Huygens, cada punto de un frente de ondas es un emisor de un nuevo frente de ondas que se propagan en todas las direcciones. La suma de todos los nuevos frentes de ondas hacen que la perturbación se siga propagando en la dirección original. Sin embargo, si por medio de una rendija o de un obstáculo puntiagudo, se separa uno o unos pocos de los nuevos emisores de ondas, predominará la nueva dirección de propagación frente a la original.

Onda propagandose a través de una rendija

La difracción de la luz se explica fácilmente si se tiene en cuenta este efecto exclusivo de las ondas. La refracción, también se puede explicar utilizando este principio, teniendo en cuenta que los nuevos frentes de onda generados en el nuevo medio, no se transmitirán con la misma velocidad que en el anterior medio, generando una distorsión en la dirección de propagación:

Refracción de la luz según el principio de Huygens

Otro fenómeno de la luz fácilmente identificable con su naturaleza ondulatoria es la polarización. La luz no polarizada está compuesta por ondas que vibran en todos los ángulos, al llegar a un medio polarizador, sólo las ondas que vibran en un ángulo determinado consiguen atravesar el medio, al poner otro polarizador a continuación, si el ángulo que deja pasar el medio coincide con el ángulo de vibración de la onda, la luz pasará íntegra, si no sólo una parte pasará hasta llegar a un ángulo de 90º entre los dos polarizadores, donde no pasará nada de luz.

Dos polarizadores en serie

Este efecto, además, permite demostrar el carácter transversal de la luz (sus ondas vibran en dirección perpendicular a la dirección de propagación).

El efecto Faraday y el cálculo de la velocidad de la luz, c, a partir de constantes eléctricas (permitividad, \varepsilon_0) y magnéticas (permeabilidad, μ0) por parte de la teoría de Maxwell:

c= \frac {1} {\sqrt{\varepsilon_0\mu_0}}

confirman que las ondas de las que está compuesta la luz son de naturaleza electromagnética. Esta teoría fue capaz, también, de eliminar la principal objeción a la teoría ondulatoria de la luz, que era encontrar la manera de que las ondas se trasladasen sin un medio material.

Teoría corpuscular

Descripción

La teoría corpuscular estudia la luz como si se tratase de un torrente de partículas sin carga y sin masa llamadas fotones, capaces de portar todas las formas de radiación electromagnética. Esta interpretación resurgió debido a que, la luz, en sus interacciones con la materia, intercambia energía sólo en cantidades discretas (múltiplas de un valor mínimo) de energía denominadas cuantos. Este hecho es difícil de combinar con la idea de que la energía de la luz se emita en forma de ondas, pero es fácilmente visualizado en términos de corpúsculos de luz o fotones.